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Summary of the Research Findings

The earlier formulation of Monte Carlo simulations of scattering of waves by
perfectly conducting random rough surfaces based on the finite-element method and
periodic boundary condition is extended to investigate scattering from one-dimensional
random rough gold surfaces at optical frequencies. In this report, two cases are
investigated. For Case 1, the random surfaces have a correlation length of 3.099X and a
root-mean-square height of 1.6927X, and the refractive index of 0.312 + i7.93 is used.
For Case 2, these numbers are 1.0525X, 0.5749X, 1.958 + i20.7, respectively. Both TE
and TM plane-wave incidences at 00, 100, and 300 are considered. The finite conducting
surfaces are modeled as lossy dielectric rough surfaces. To reduce the computational
domain, for the TE case, we insert a perfect electric conducting (PEC) wall which has the
same rough surface profile at a few skin depths below the air-dielectric interface.
Similarly, for the TM case, a perfect magnetic conducting (PMC) wall is used.

In our formulation, the scattered field slightly above a reference plane at a small
distance (0.5X) above the maximum height of the rough surface is expanded in terms of
Floquet modes. The region bounded by this reference plane at the top, the conducting
plane at the bottom, and the periodic boundary condition on the two sides is calculated
using the finite elements with the field at the reference plane being specified as cosine or
sine functions. We call these solutions finite-element modes. There is no one-to-one
correspondence between the FEM modes and the Floquet modes. In fact, each of the FEM
modal solutions in the region very close to the rough surface incorporates all the
propagating modes and a large number of evanescent modes. Most of these evanescent
modes, however, decay to zero at the reference plane. For each of the finite-element
modes, we solve a Helmholtz equation in which we use a discretization of 6 nodes per
linear wavelength for all the calculations reported here. The FEM calculation is very
efficient with the use of a sparse matrix solver. The amplitudes of the Floquet modes are
calculated by matching the field and its normal derivative represented by the Floquet modes
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and linear combinations of FEM modes on the two sides of the reference plane. The fast
Fourier transform (FFT) algorithm has been used in the process to improve numerical
efficiency. Extensive numerical experiments show that only four to six evanescent modes
are needed. The maximum error in the power conservation is less than 1 % when the lossy
medium is replaced by a lossless one. There are two propagating Floquet modes for each
wavelengch of the surface length. Therefore, a full matrix equation of the order of 2
[integer (L / X)] + NE + 1 needs to be solved, where NE is the number of evanescent modes
and L is the surface length. In the calculation of surface length of 5OX, we have used 101
propagating modes and 4 evanescent modes, a total of 105 Floquet modes. The same
number of FEM modes are used. In contrast, for the spectral domain extended boundary
method in which the field is expanded right on the rough surface, as many evanescent
modes as propagating ones are often required for the large surface height considered in this
study. On the other hand, a full matrix of the order 1000 x 1000 is required for the integral
equation method for this two-medium problem when a discretization of 10 per linear
wavelength is used for the rough surfaces under consideration.

In the numerical results to follow we present the radar cross sections of the rough
surface for both TE and TM incidences at 00, 100, and 300 at the wavelengths of 1.152 .m
(Case 1) and 3.392 .m (Case 2). To investigate the effect of the surface length L to the
radar cross section, two surface lengths, namely, L = 30X and 5OX are us.l for Case 2 with
the TM incidence at 300. Figure 1 shows that the RCS exhibits two peaks, one at the
backscattering direction and the other at the specular direction, when the surface length is
small. In Figure 2, however, the specular peak is suppressed while the backscattering is
enhanced when we increase the surface length to 50X. For this two-medium problem, due
to limited computer resources, we chose all our surface lengths to be 50X. Figures 3 to 14
show the RCSs for all the 12 cases. We summarize our findings as follows: (1) both the
TE and TM incidences show backscattering enhancement at all three incident angles; (2) it
is also found that while the TE and TM responses are very similar in Case 1, TE incidence
yields stronger backscattering enhancement in Case 2, in contrast to the scattering from
surfaces with small roughnesses where backscattering enhancement is observed only for
the TM waves; (3) of all the numerical simulations, the lossy surfaces absorb more power
for the TM incidences than that of the TE; and (4) the absorption rate decreases with the
incident angles.
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